Research

Filter results

Department
Clear
Author
Type
Dates
Clear
FROM
TO

Research

Found 15 matching results.(Clear)
  • 12
    Dec
    Powdery mildew in Arava spring melons
    Vegetables, Plant Protection

    תחום או ענף הגה"צ; ירקות

    תאריך עדכון 1/10/2011

    תיאור מלא Powdery mildew in Arava spring melons

    Shimon Pivonia, Rachel Lavite, Svetlana Dobrinin, Israel Tsabari, Ela Yosel - Central and Northern Arava Research and Development
    Yigal Elad, Dan Shtainberg - Agricultural Research Organization, Israel

    Email for correspondence: ShimonP@arava.co.il

    Melon is an important crop in the Arava. These melons are grown for export and for the local market. The use of integrated pest management and decreased amounts of chemical sprays are not yet common practice in melon production in the Arava and it is important that these areas be developed. Powdery mildew is the main foliar disease affecting melon during the spring. In order to prevent damage to the plants and crop yield, growers make multiple applications of sulfur products and other products over the course of the season. The goal of the present study was the development of an approach for managing powdery mildew that includes minimal and intelligent use of pesticides.
    During the spring seasons of 2006-2010, we conducted experiments to study the relationship between environmental conditions and the development of powdery mildew in the field and to identify a spray schedule for the control of powdery mildew. We studied the spacing of the necessary sprays, the timing of the first spray treatment and the timing of the final spray treatment in a melon cultivar that is very susceptible to powdery mildew and a cultivar with specific tolerance to powdery mildew. We also examined the possibility of controlling powdery mildew in melon through the use of systemic fungicides delivered through the drip-irrigation system. The races of powdery mildew found among melon and other cucurbits in the Arava were also defined.
    The results of these experiments indicate that the spring growing season in the central Arava (transplanting in early December and growth through the end of June in walk-in tunnels) can be divided into a number of periods defined by different phases of powdery mildew development, which are primarily dictated by temperature conditions. The first period, from transplanting until the appearance of the disease, begins in early December and continues through mid-January or mid-February. The second period, characterized by conditions that are good to optimal for disease development, extends from the appearance of the disease through mid- or late April. The third period, during which environmental conditions are less favorable for disease development, extends from the end of April through the end of June, when the sanitation period begins.
    Spray programs should be based on the division of the season based on the appearance and development of powdery mildew. During the first period, there is no need to spray. Spray treatments should be applied at the beginning of the second period, based on observations of the situation in the field, and continually applied once every 1 to 2 weeks, depending on the level of infection and the material being sprayed. During the final period, spray treatments should be discontinued, in accordance with the low level of infection in the field at that time.

    Acknowledgements
    We would like to thank the Chief Scientist of the Ministry of Agriculture for funding this research.

    שפה English
    מלות מפתח Cucumis melo, powdery mildew, Podosphaera xanthii, walk-in tunnel, off-season agriculture
    מחבר Shimon Pivonia, Rachel Lavite, Svetlana Dobrinin, Israel Tsabari, Ela Yosel, Yigal Elad, Dan Shtainberg
    שנה 2010
    שייכות yzvieli
    תאריך יצירה 1/10/2011
    תאריך עדכון 14/3/2012

  • 12
    Dec
    Development of an organic IPM regime for winter basil crops
    Vegetables, Plant Protection

    תחום או ענף אורגני; הגה"צ; ירקות; תבלינים

    תאריך עדכון 1/10/2011

    תיאור מלא Development of an organic IPM regime for winter basil crops

    Dafna Harari, Shimon Pivonia, Dorit Hasmonai, Rami Golan, Svetlana Gogio – Northern and Central Arava R & D
    Yigal Elad – Institute of Plant Protection, Agricultural Research Organization, Volcani Center
    David Silverman, Svetlana Dobrinin – Extension Service (Shaham), Ministry of Agriculture and Rural Development

    Email for correspondence: dafnahr@arava.co.il

    The main problem in organic herb crops is that of crop protection, how to control diseases and pests. Herbs are attacked by a number of diseases and pests. The intensity and severity of the damage caused varies from crop to crop. Herb production is characterized by a large number of harvests over the course of the season followed by renewed vegetative growth. Some of these harvests are technical harvests. The main foliar disease in most herb species is gray mold (Botrytis cinerea), which is particularly problematic during the winter and decreases the shelf-life of the harvested crop. The options for controlling Botrytis in organic crops are limited. For this reason, the specific goals of this study were to define the optimal environmental conditions for retarding the development of diseases and pests and to define the reciprocal relations between them.
    In an experiment carried out at the Yair Research Center in the Arava during the 2009-2010 growing season, we tested the effects of different growth regimes on basil crops. The tested regimes were as follows: A) control – standard plant density, ventilated building, covered beds; B) spacious – more space between plants, ventilated building, covered beds; C) closed building (warm) – standard plant density, closed building, covered beds; and D) total ground cover – standard plant density, ventilated building, continuous coverage of the soil in the beds and the paths between them. The harvests were carried out based on the size of the plants and the cropping season. The ventilated treatment in which the ground was completely covered produced the highest average yield throughout the season as well as the highest average overall yield (2.7 kg/m2), which was significantly higher than the yield in the closed, unventilated (warm) buildings (2.1 kg/m2). In the treatments in which the ground was completely covered or in which there was more space between the plants (15 plants/m2, which is two times less than the normal stand density) or in which the building was ventilated, the quality of the yield was good, index 2.5. This was in contrast to the quality of the yields in the control treatment and the warm treatment in the closed building, which received average scores of 2.3 and 2.1, respectively, indicating that the basil harvested from those plots was not marketable.
    During a relatively warm winter, there appear to be clear yield and yield-quality advantages to growing basil in ventilated buildings, in which humidity is low, as opposed to closed buildings. Similar advantages were observed for the use of a lower plant density and ventilation. Growing basil at a lower plant density did not significantly decrease yield, relative to the standard density. The quality of the basil grown at the lower density was higher than that of the basil grown at the regular density. Research aimed at identifying biological control methods for use against pathogens as well as the optimal agro-technical conditions for winter herb crops should be continued.

    Acknowledgements
    We would like to thank the Scientist’s Fund for funding Research Program no. 603-0203-09. We would also like to thank the management of the Vegetable Division of the Plant Board and the Association of Herb Growers for helping to fund this project.

    שפה English
    מלות מפתח Integrated pest managment, walk-in tunnels, Botrytis, Bemisia, whitefly, fresh-cut herbs
    מחבר Dafna Harari, Shimon Pivonia, Dorit Hasmonai, Rami Golan, Svetlana Gogio, Yigal Elad, David Silverman, Svetlana Dobrinin
    שנה 2010
    שייכות yzvieli
    תאריך יצירה 1/10/2011
    תאריך עדכון 14/3/2012

  • 12
    Dec
    Evaluation of substances for the control of rust mites in organic tomato crops
    Plant Protection

    תחום או ענף אורגני; הגה"צ; ירקות

    תאריך עדכון 1/10/2011

    Evaluation of substances for the control of rust mites in organic tomato crops

    Shimon Pivonia, Rachel Levite, Ela Yosel – Central and Northern Arava Research and Development.

    Email for correspondence: ShimonP@arava.co.il

    Tomato is an important crop for organic agriculture in the Arava. For the 2009-2010 growing season, a total of 750 dunams of organic tomato were planted in the Arava, accounting for 30% of the total organic acreage and 50% of the tomato acreage in the Arava. During a tour of the fields of a number of organic growers during the 2008-2009 season, we saw many fields that were heavily infested with tomato rust mite (Aculops lycopersici). This mite causes bronzing of leaves and stems, causes leaves to dry out and causes fruit to turn yellow and turn corky. In an experiment carried out in the organic section of the Yair Research Station in the Arava during the 2009/10 season, we examined the control efficacies of three materials that may be used in organic crops: sulfur dust, EOS oil and Genikan. These treatments were compared with an untreated control. There were two replicates of each treatment. On September 1, 2009, tomato plants cv. Misty were transplanted into15-m-long walk-in tunnels that were covered with 50-mesh netting. The plants were grown on trellises, as is customary.
    The spontaneous, expected infestation of the crop with rust mite began in late October. During November and December, we applied each of the spray treatments four times (two weeks between each treatment). No treatments were applied in January and, for the rest of the season, we sprayed as necessary based on scouting of the crop. From February until April, we applied Genikan an additional six times in one replicate and four in the other. During this period, we applied EOS an additional five times in one replicate and three in the other and we made one additional application of sulfur in one of the replicates for that treatment. The incidence of mites reached 100% in the control plants by the end of January and in the Genikan-treated plants by March. In the EOS and sulfur treatments, the incidence of damaged plants remained low throughout the season and reached 30-50% by the end of April. In terms of plant damage, intense drying-out of the crop canopy was observed in the control plots, as well as fruit damage. However, the level of damage observed in the control plots was lower than that observed in the Genikan-treated plots. The plants treated with sulfur or EOS oil remained vibrant through the end of the study and no damage was observed in the fruit from these treatments. The sulfur dust treatment was the most effective for controlling rust mites. The EOS oil treatment provided the next-best mite control, but required more applications than the sulfur treatment. Genikan was not sufficiently effective to prevent the damage caused by this mite.

    Acknowledgements
    We would like to thank the Makhteshim and Da Kedem companies for supplying the spray products for this study and Katrina Krizova for the photographs.

    שפה English
    מחבר Shimon Pivonia, Rachel Levite, Ela Yosel
    שנה 2010
    שייכות yzvieli
    תאריך יצירה 1/10/2011
    תאריך עדכון 14/3/2012

  • 10
    Dec
    Establishment of the predatory mite Euseius scutalis in pepper and its potential for use in the control of broad mites
    Plant Protection, Vegetables

    תחום או ענף אורגני; הגה"צ; ירקות

    תאריך עדכון 1/10/2011

    תיאור מלא Establishment of the predatory mite Euseius scutalis in pepper and its potential for use in the control of broad mites

    Danit Parker, Shimon Pivonia - Arava Research and Development.
    Shimon Shtainberg, Arnon Alush, Avner Hess - Bio Bee

    Email for correspondence: ShimonP@arava.co.il

    Broad mite (Polyphagotasnemus latus) is a serious pest in many agricultural crops, including pepper. From transplanting through flowering, there is no biological control agent that can be used against broad mite that can survive on the plant and, aside from sulfur, which may be used in organic crops and which requires a large-scale treatment, there is no other solution for the control of this pest. Sweet potato whitefly (Bemisia tabaci gennadius) is another agricultural pest. This insect is a serious, multi-host pest that affects a number of crops, including pepper. To date, a number of biological control agents have been tested for use against sweet potato whitefly, including the predatory mite Amblyseius swirskii, which is used as a biological control agent against thrips, sweet potato whitefly and even, to a limited extent, against red mites. This mite is a member of the Phytosediidae family, which includes many species of predatory mites, including Euseius scutalis. In contrast to the predatory mite A. swirskii, which is naturally found on the coastal plain, the E. scutalis mite is naturally found in the Arava. This is an advantage in terms of adapting this species to the local climate.
    In experiments that were carried out during the 2009/10 season at the Yair Research Station, we examined the efficacy of the predatory mite E. scutalis as a biological control agent for use against broad mite in pepper and examined its ability to establish itself from the transplanting phase through flowering with the aid of weekly applications of pollen. We also compared the abilities of the predatory mites E. scutalis and A. swirskii to control sweet potato whitefly.
    The mite E. scutalis was able to control broad mite. When this mite is distributed at transplanting in situations in which sweet potato whitefly is not already present inside the net-house or other cropping structure (as is generally the case in plots covered with 50-mesh netting), there is a concern for the diet of the predatory mite that necessitates the application of pollen, so that the mite can survive until flowering or the appearance of insects that it can eat. Weekly spraying of the plants with pollen preserves a minimal population of the predatory mite inside the cropping structure. Without these pollen sprays, the mite will disappear until flowers appear. The results of our second experiment only hint to the potential of E. scutalis as a means of controlling sweet potato whitefly.
    In the coming years, we will continue to evaluate the use of E. scutalis for the biological control of broad mite in pepper, from transplanting through flowering and onward. We will also evaluate its potential for use against sweet potato whitefly and examine the reciprocal relationship between this mite and Orius fleas. This flea may be responsible for the disappearance of this mite during the winter, as was observed in the present study.

    שפה English
    מחבר Danit Parker, Shimon Pivonia, Shimon Shtainberg, Arnon Alush, Avner Hess
    שנה 2010
    שייכות yzvieli
    תאריך יצירה 1/10/2011
    תאריך עדכון 14/3/2012