Irrigation of a mango plantation with desalinated water, Sodom Valley
Orchard7
תחום או ענף מטעים
תאריך עדכון 14/3/2012
Irrigation of a mango plantation with desalinated water, Sodom Valley
Dafna Harari, Ami Maduel, Uri Zeiri, Aviran Asraf, Rami Golan, Svetlana Gogio – Central and Northern R&D Arava
Baruch Luzon, Izik Kosto, Shlomo Kramer – Extension Service, Ministry of Agriculture and Rural Development
E-mail address for correspondence: dafnahr@arava.co.il
Abstract
Aside from dates, no orchard or vineyard crops have been grown in the Sodom Valley area, unlike the southern areas of the Arava Valley, in which mango and grapes are grown. Despite the unique climate of the Sodom Valley area and the early-ripening advantages associated with such a climate, the area in this region planted to orchards/vineyards (excluding dates) is limited and includes small areas of Brazilian figs and papaya. The main reason for this is the quality of the water. The saline water available in the area has an EC of 3.5-4. In the case of perennial crops, such as orchard crops and grapevine, the salt accumulates in the plant, there is a subsequent decrease in growth and yield and the trees or vines eventually die. In the past, experiments were conducted involving orchard crops and vineyards in the region, but these efforts did not succeed over the long term due to the accumulation of salts. The decrease in the cost of desalinated water and the development of more effective, cheaper technologies have made possible the desalination of water for agriculture. This desalinated water can be blended with local water. The quality of this blended water is just as good as that of the piped water in the northern and central parts of the country. That is, this water has a salinity level of 1-1.5 (dS/m).
In 2006, a mango orchard was planted on the grounds of the Zohar Experimental Station. Mango cultivars Shelly and Tommy were planted in a screen-house. Some plots were irrigated with the local piped water and the others were irrigated with desalinated water. The plots were separated by sheets of polyethylene that extended to a depth of 1.5 m, in order to prevent the roots from growing in the direction of the blended water. After six growing seasons, large differences were noted in the growth of the plants and the quantity and quality of their yields. Soil and root examinations in the treatment that was irrigated with local pipeline water revealed increased salinity in the deeper layers and, for that reason, fewer roots. The damage that the salinity caused the trees was visible in both cultivars, but was especially notable in cv. Shelly; some of those trees dried up completely. Regarding the yield, we saw heavy fruit production throughout the orchard, in both cultivars and both irrigation treatments. The cv. Tommy did comparatively better when it was irrigated with the blended water. In cv. Shelly, there was no significant difference in export-quality yield, but about 30% of the yield of this cultivar was made up of small fruit (less than 200 g) that were not fit for export. In light of the results of this study, it is clear that the expansion of the variety of orchard crops grown in Sodom Valley requires a supply of water that is significantly less saline than that currently available for agriculture. The success of the experiment will open up new ways to take advantage of the idea of building a central desalination facility for each region.
שפה English
KETWORDS irrigation, salinity
AUTHORS Dafna Harari, Ami Maduel, Uri Zeiri, Aviran Asraf, Rami Golan, Svetlana Gogio, Baruch Luzon, Izik Kosto, Shlomo Kramer
שנה 2011
שייכות yzvieli
תאריך יצירה 14/3/2012
תאריך עדכון 14/3/2012